2 June 1969

Volume 29A, number 6

en inveshe anti-

erposition heights in a natural ant between ted curves hyperfine lectric reities in in a non the iron when the [5][4]. tragonal

ic suscepti-

Cu0.05

Fig. 2. Absorption spectra of Mössbauer effect of $(Mn_{0.99} Fe_{0.01})_{0.95} Cu_{0.05}$ alloy. Closed circles are observed values and solid curves are calculated. (See text.) Numbers attached are values of applied magnetic field.

PHYSICS LETTERS

2 June 1969

transformation is quite remarkable. The discontinuous change of the electric resistivity at the transition temperature almost disappeared by addition of 1 at. % iron to $Mn_{0.95}Cu_{0.05}$ alloys. The iron impurities also affected the susceptibility in such a way as to broaden the sharp kink observed at the transition temperature. These results are quite contrasted with the effect of copper impurities on the transition. The alloys containing 5 at. % copper still show a sharp transition.

Thanks are due to Dr. H. Nagasawa for the measurement of the electric resistance at low temperatures.

References

- 1. Y. Ishikawa and Y. Endoh; J. Phys. Soc. Japan 23 (1967) 205.
- Y. Ishikawa and Y. Endoh; J. Appl. Phys. 39 (1968) 1318.
- E. R. Vance and R. L. Davis; J. Phys. Soc. Japan 25 (1968) 367.
- 4. Y. Endoh, to be published.

NONLINEAR PRESSURE EFFECT ON THE ELECTRONIC DENSITY OF STATES OF INDIUM*

G. DUMMER**

Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA

Received 17 April 1969

The pressure dependence of γ of In was determined directly from low temperature measurements of the changes of the critical field under pressure. The observed change of H_c under hydrostatic pressure does not follow the predictions of the similarity principle.

The normal electronic density of states may be deduced from the critical field of a superconductor, $H_{\rm C}(T)$, at temperatures approaching $0^{\rm O}$ K [1]. This article describes measurements of $H_{\rm C}(T)$ for In of sufficient sensitivity to observe the pressure effect on the Sommerfeld constant, γ , directly and which shows the deviations from the so-called "similarity principle" which occur under pressure. $H_{\rm C}$ of In from $T_{\rm C}$ to $0.3^{\rm O}$ K was measured under pressures up to 1000 atm using solid He. γ was calculated from the slope of $H^2_a(T,p)$ versus T^2 using:

$$H_{\rm c}^2 = H_{\rm O}^2 - (4\pi\gamma/V)T^2 .$$
 (1)

* This work was supported in part by the Advanced Research Projects Agency under Contract SD-131.

** On leave from the Universität Karlsruhe, Karlsruhe, Germany.

Volume 29A, number 6

Fig. 1. Pressure dependence of $\Delta \gamma^*$ and ΔH_c . The curve through the $\Delta \gamma^*$ values represents a parabolic fit. The relative error in pressure was about 1%.

The critical field was determined from measurements of specimen magnetization versus applied field using an improved vibrating coil magnetometer [2]. The apparatus permitted isothermal comparison of two In specimens, one at p = 0 and one mounted in a pressure cell[†]. The relative accuracy in γ is about 2×10^{-4} .

In fig. 1 ΔH_c at $T = T_c$ and T = 0 and $\Delta \gamma^*$ ($\gamma^* = \gamma/V$) are plotted against pressure. A linear least square fit of the $\Delta \gamma^*$ values does not describe the observed behavior within the experimental errors. An excellent fit is obtained by a parabolic dependence of $\Delta \gamma^*$ versus *p*. Using the pressure dependent compressibility [4] one obtains:

$$\gamma(p) = 1.6720 - 1.4 \times 10^{-5} p + 34 \times 10^{-10} p^2$$
 (2)

where p is in atm and γ in mJ/mole^OK [2]^{††}.

From fig. 1 $\partial H_c/\partial p$ was calculated. $(\partial H_c/\partial p)T_c =$ = - 6.87 ± 0.05 G/10³ atm and $(\partial H_c/\partial p)T_{=0} =$ = - 4.52 ± 0.05 G/10³ atm are both higher than those of Collins et al. [6] which were derived

† Measurements of Gubser [3] give the following values for In: $\gamma = 1.672 \text{ mJ/mole}^{\circ}\text{K}^2$ and $H_0 = 281.53 \text{ gauss}$. These values were used to define the temperature scale in the range below 1°K.

†† The compressibility of 2.2×10^{-6} atm⁻¹, deduced from elastic constants by Chandarasekhar and Rayne [5] slightly modifies eq. (2). The revised values are: dln γ /dln V = 3.7 for p = 0 and 1.9 for p == 1000 atm.

PHYSICS LETTERS

from the change in length which occurs at the transition from the normal to the superconducting state in a magnetic field.

In recent years several values of $d \ln \gamma/d \ln V$ have been reported: 1.0 ± 0.5 by Rohrer [7], 2.9 ± 0.8 by Collins et al. [6], and 1.5 ± 0.3 by Berman et al. [8]. From eq. (2) we get $d \ln \gamma/d \ln V =$ $= 3.40 \pm 0.1$ for $\dot{p} = 0$ and 1.80 ± 0.05 for $\dot{p} =$ = 1000 atm [5]. Our value for $\dot{p} = 0$ agrees fairly well with that of Collins. Berman et al. [8] extrapolated high pressure γ -values with relatively large errors. Although some of their main assumptions concerning the shape of the critical field curve for calculating γ are not valid, the difference in d ln $\gamma/d \ln V$ can be explained by considering the nonlinear decrease of γ below 1000 atm.

The pressure dependence of K, a characteristic superconducting constant,

$$K = 2\pi\gamma T_{\rm c}^2 / V H_{\rm o}^2 = 2\pi\gamma^* T_{\rm c}^2 / H_{\rm o}^2$$
(3)

can be investigated since $(\partial H_c/\partial p)_{T\to 0}$, $\partial T_c/\partial p$, and $\partial \gamma^*/\partial p$ were measured independently. For $p \to 0$ one finds $dK/dp = (-0.25 \pm 0.5) \times 10^{-6} \text{ atm}^{-1}$ Going to higher pressures K increases due to the nonlinearity of $\gamma^*(p)$. At 1000 atm dK/dp is about $3.4 \times 10^{-6} \text{ atm}^{-1}$. A consequence of this is that the shape of the reduced critical field curve also changes under pressure. This was directly confirmed by temperature dependent measurements of $\partial H/\partial p$.

The author would like to thank Professor D. E. Mapother for his hospitality during this work and for helpful discussions.

References

- J. E. Schirber and C. A. Swenson, Phys. Rev. 123 (1961) 1115.
- D. U. Gubser and D. E. Mapother, Rev. Sci. Instr., to be published.
- 3. D. U. Gubser, to be published.
- L.D. Jennings and C.A. Swenson, Phys. Rev. 112 (1958) 31.
- B.S. Chandarasekhar and J.A. Rayne, Phys. Rev. 124 (1961) 1011.
- J. G. Collins, J. A. Cowan and G. K. White, Cryogenics 7 (1967) 219.
- 7. H. Rohrer, Helv. Phys. Acta 33 (1960) 675.
- I. V. Berman, N. B. Brandt and N. I. Ginzburg, Sov. Phys. JETP 26 (1968) 86.

2 June 1969